

Plastics underground: microplastic pollution in South African freshwater caves and associated biota

Thendo Mutshekwa^{id} · Samuel N. Motitsoe ·

Trishan Naidoo · Zamabhisi Majingo ·

Musa C. Mlambo

Received: 25 September 2024 / Revised: 23 December 2024 / Accepted: 11 January 2025
© The Author(s) 2025

Abstract Microplastics (MPs) have been characterised in South African rivers, lakes, and the marine environment, yet we know less about MPs in subterranean environments. In this study, we assessed MP pollution in the sediment, subsurface water, and resident freshwater amphipod, *Sternophysinx* species across six South African subterranean cave systems. We hypothesised that MP pollution will increase with human visitations and activities in and around selected subterranean caves. We found MPs in sediments, subsurface waters, and amphipod species ranging from 4.9 ± 1.2 to 25.0 ± 6.9 particles/kg⁻¹, 2.7 ± 0.7 to

15.0 ± 1.7 particles/L⁻¹ and 2.1 ± 0 to 9.8 ± 3.1 particles/dry mass, respectively, with polypropylene being the most abundant polymer according to FTIR analysis. White fibres were dominant in sediments and water samples, whereas blue fibres were dominant in amphipods. Our results supported the hypothesis that MPs densities were correlated with human visitation and activities in and around the caves. The presence of MPs in subterranean caves presents a biodiversity and conservation threat to endemic and understudied cave-dwelling aquatic invertebrates, due to MPs ability to be transferable between trophic levels causing physiological constraints.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s10750-025-05800-w>.

Guest editors: Massimiliano Scalici, Monique Mancuso, Paula Sobral, Timothy Hoellein & Verónica Ferreira / Plastic Pollution in Aquatic Ecosystems

T. Mutshekwa (✉) · Z. Majingo · M. C. Mlambo
Department of Freshwater Invertebrates, Albany Museum,
Makhanda 6139, South Africa
e-mail: thendomutshekwa@gmail.com

T. Mutshekwa
Institute for Water Research, Rhodes University,
Makhanda 6140, South Africa

T. Mutshekwa · S. N. Motitsoe
School of Animal, Plant and Environmental Sciences,
University of the Witwatersrand, Johannesburg 2050,
South Africa

Keywords Subterranean environments · Groundwater pollution · *Sternophysinx* species · Trophic transfer · Anthropogenic activities

T. Naidoo · M. C. Mlambo
Department of Zoology and Entomology, Rhodes University, Makhanda 6139, South Africa

T. Naidoo · M. C. Mlambo
South African Institute for Aquatic Biodiversity,
Makhanda 6140, South Africa

Introduction

Microplastic (MP) pollution has gained significant attention in the past decade due to its wide distribution and ecological impacts including potential harm to humans, marine, and freshwater organisms, causing trophic disruptions and biodiversity loss (Ogonowski et al., 2018; Ma et al., 2020; Rochman & Hoellein, 2020; Pinheiro et al., 2021). Global plastic production has expanded rapidly, from 1.5 million tons in the 1950s to 390.7 million tons in 2022 (PlasticsEurope, 2022). According to Boucher & Friot (2017), the largest contribution of MP pollution originates from primary sources such as cosmetics, clothing, and personal care products (hereafter referred to as primary MPs). Considering their durability, persistence, and small size of $<1 \mu\text{m}$ –5 mm (Friis & Nash, 2019), primary MPs can easily be transported unaided into and between aquatic habitats, including groundwater habitats (Singh & Bhagwat, 2022), where they can pose a significant threat to some unique and sensitive aquatic ecosystems.

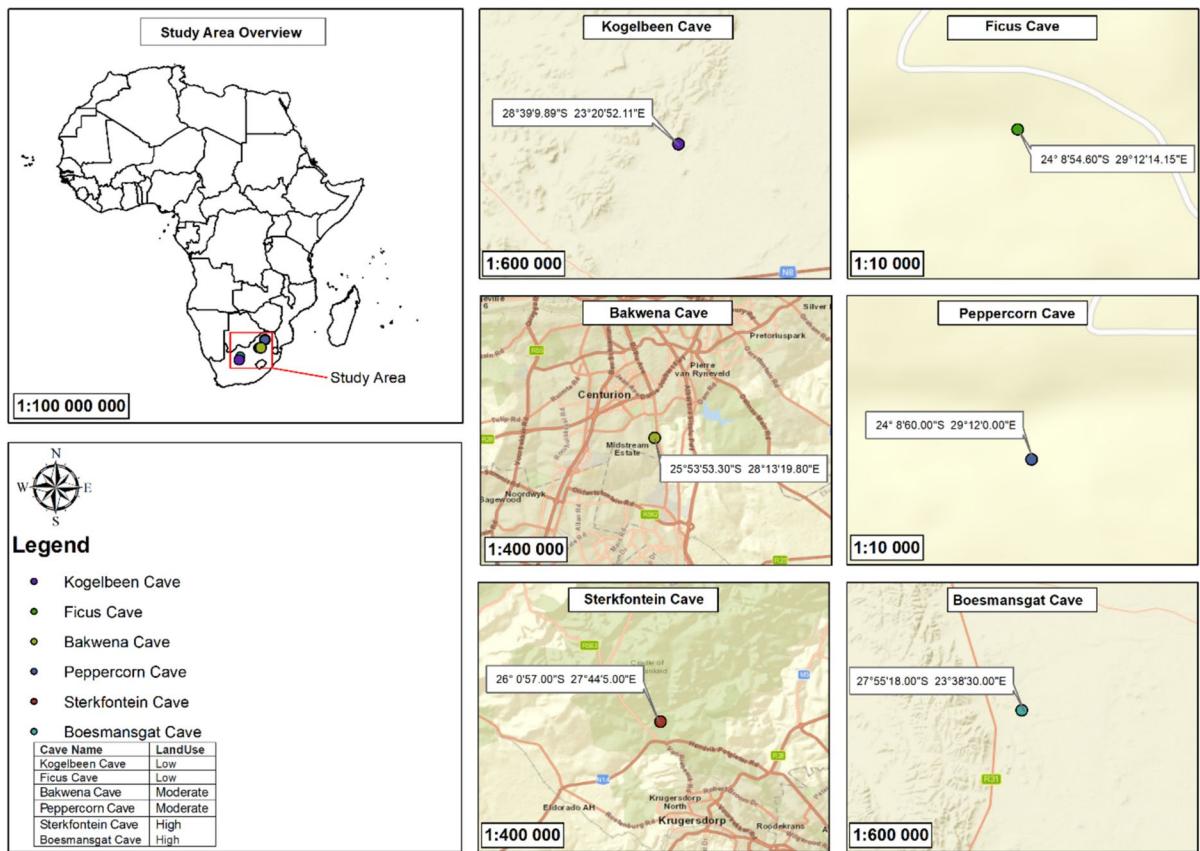
Groundwater is a vital component of the Earth's hydrological cycle and comprises approximately 30% of the world's readily available freshwater reservoirs (Todd & Mays, 2004). This ecosystem plays a crucial role in sustaining surface freshwater resources and biodiversity (Griebler et al., 2015), maintaining aquifer storage (Foster et al., 2003), and regulating the water cycle (Miguez-Macho et al., 2012). However, these ecosystems face numerous threats due to landscape developments taking place above ground including contamination by industrial, domestic, and agricultural waste and activities and overexploitation, which can lead to poor water quality, thus affecting the availability of potable freshwater resources (Singh & Bhagwat, 2022). The presence of MPs in groundwater has been shown to have a negative impact to aquatic organisms including microorganisms, invertebrates, fish, humans, domestic, and wildlife, through bioaccumulation, and overall disrupting the ecosystem functions (Sforzi et al., 2024). It is also worth noting that conservation efforts such as sustainable groundwater management and effective wastewater treatment have been made to mitigate groundwater contamination issues (Wynne et al., 2021; Mammola et al., 2022; Khant and Kim, 2022). The introduction of MP in groundwater highlights the need for comprehensive

research and urgent action to address this emerging environmental issue.

It is estimated that 11% of the plastic produced every year ends up in aquatic ecosystems (Borrelle et al., 2020). Therefore, monitoring MP types and pollution in the environment is essential to comprehend their potential sources and fate (Barboza et al., 2018; Henry et al., 2019; Prata et al., 2019). Microplastic has been found in marine (Naidoo et al., 2015) and various surface freshwater waterbodies including rivers (Nel et al., 2018; Jiang et al., 2019; Dalu et al., 2021), lakes, and reservoirs (Mbedzi et al., 2020; Mutshekwa et al., 2023; Nava et al. 2023), with evidence showing direct and indirect MPs ingestion by several aquatic organisms (Redondo-Hasselerharm et al., 2018a, b; Windsor et al., 2019; Gallitelli et al., 2024). However, there is little research on MP pollution in groundwater (Schimdt & Hahn, 2012; Jasechko & Perrone, 2021), despite groundwater's contribution to potable freshwater resources maintenance, aquatic biodiversity, and ecosystem health (Saccò et al., 2019). Microplastics in groundwater are often discussed in terms of their occurrence (see Panno et al., 2019; Singh and Bhagwat, 2022; Viaroli et al., 2022), with little attention given to the potential effects on organisms within these connected ecosystems (Storzi et al., 2024). Although subterranean freshwater environments are progressively perceived for their ecological and socio-economic value (Cantonati et al., 2020), they have not yet been sufficiently documented and examined concerning MP pollution in comparison with their counterparts i.e. surface freshwater bodies and marine ecosystems (Panno et al., 2019). Similar to surface freshwater bodies, subterranean freshwater caves are equally vulnerable to environmental change and degradations; they can be effectively damaged by pollution contamination (Mammola et al., 2019; Sánchez-Fernández et al., 2021), causing an irreparable loss of natural habitats and endemic species (Khatri and Tyagi, 2015). For instance, assessing MPs pollution in freshwater caves is crucial, since they are not only known to be important freshwater water reserves (see Moldovan et al., 2020), and/or hosting unique, rare, and endemic biodiversity, but they are also well known for their paleontological and geological heritage importance, popular particularly for their peculiar speleothems (Culver and Pipan, 2019).

Microplastic pollution sources in caves can include waste and storm water runoff, atmospheric deposition, and physical littering (Panno et al., 2019). The pollution and distribution of MPs in both aquatic and terrestrial environments can have far-reaching consequences, where they can be transported vertically into the subsoil, travelling over long distances throughout the rock fractures, and accumulating in the groundwater system (Chia et al., 2021), thus further contaminating groundwater reserves and ultimately finding their way to subterranean freshwaters. As of late, the interest in subterranean environments has grown remarkably, highlighting the importance of biodiversity conservation and sustainable management of such important and unique environments (Chiarini et al., 2022). However, subterranean freshwater environments in Southern Africa are neglected, yet they are home to a diverse range of species, some of which are endemic and highly adapted to these unique, isolated ecosystems. Despite their ecological significance, these environments remain underexplored and are often overlooked in conservation efforts across the region.

For an example, South Africa is home to several subterranean freshwater limestone caves, scattered across the country, of which some are of great paleontological and paleoarchaeological importance (Beaumont & Vogel 2006; Herries et al., 2020). Biologically, these caves support important populations of bats, including the endangered Natal long-fingered bat *Miniopterus natalensis*, and countless numbers of terrestrial animals (Irish & Marais, 2002; Jacobs et al., 2017; Ferreira et al., 2020). In terms of aquatic animals, amphipod communities are known endemics dominating South African cave systems (Griffiths & Stewart, 2001). These caves vary considerably in their human usage and access, some are generally open to the public, while some are more restricted and on private land. Freshwater caves in South Africa face significant environmental challenges, primarily due to pollution and over-extraction of water (Shararat et al., 2000; Durand et al., 2010). Human visitation, agricultural runoff, industrial waste, and sewage discharge can potentially contaminate these caves, resulting in deteriorating water quality and impacting the health of aquatic organisms. Activities like mining and urban development are known to directly destroy South African cave habitats or alter the hydrological system that sustains them (Durand, 2008; Du Preez


2014; Pretorius et al., 2021). Climate change adds another layer of risk by altering precipitation patterns and increasing the frequency of extreme weather events, which thus destabilise the cave environment and affect water availability (Faith et al., 2019). Currently, freshwater habitats are among the most threatened ecosystems in South Africa (Kajee et al., 2023) and while caves may fall within some of these ecosystems, they have not yet been directly assessed as important ecosystems, nor incorporated into active management or conservation plans at a national level, thus reinforcing the need to protect such habitats.

Currently, there has been no characterisation of MPs pollution in South African freshwater caves and their biota. Thus, filling this research gap is the rationale for the present study, which aims to investigate and characterise (shape, colour, polymer type, and size) the MP occurrence, density in sediments, subsurface waters, and amphipod species of six South African freshwater caves associated with various land-use activities. We hypothesised that MPs would be widespread through all caves and amphipod fauna and that caves with low land-use and limited human access; thus, few human activities or usage will have the least MPs densities and that caves with high land-use and touristic attraction to have the high MPs densities. Furthermore, we hypothesised that caves with higher land use will have a greater diversity of MPs, with a broader range of shapes, colours, and polymer types, compared to caves with minimal human impact. Our research will provide a baseline for future work related to the transport and fate of MPs in South African subterranean environments that can inform mitigation and management plans, particularly if the environment and associated biota are threatened by MPs.

Materials and methods

Study area

The study was conducted in six subterranean freshwater caves in South Africa across a gradient of land use (i.e. Low, Moderate, High) and human activities (i.e. deep water diving, rock climbing, and spiritual activities) (Fig. 1). Kogelbeen and Ficus caves, located in the Northern Cape and Limpopo, respectively, were associated with low land use and human activities due

Fig. 1 Study sites locations for the six freshwater caves across three provinces i.e. Northern Cape, Gauteng and Limpopo, South Africa

to their challenging accessibility. In contrast, Peppercorn in Limpopo and Bakwena in Gauteng caves were associated with moderate land use and human activities, where both cave were open to public and ease access, whereas Boesmansgat in Northern Cape and Sterkfontein in Gauteng caves were associated with high land use and human visitation including picnic sites, tourism centres, and exhibition and rock climbing and deep diving.

Kogelbeen Cave, located in the Northern Cape of South Africa (28° 39' 11.0" S, 23° 20' 52.8" E), is the longest known cave in the region, measuring 788 m in length (from the mouth to its deepest explored point). Situated at an elevation of 1397 m above sea level (Irish & Marais, 2002), it features dolomitic limestone formations and is recognised as South African Natural Heritage Site. The cave entrance leads to a sinkhole and descends to a maximum relative depth of – 8 m. Freshwater, typically found at 57 m, was

observed at a lower level during a recent sampling event, likely due to reduced rainfall (Reiss et al., 2019). The cave serves as an important roost for three bat species: *Miniopterus schreibersii*, *Rhinolophus clivosus*, and *Rhinolophus darlingi* (Herselman and Norton, 1985). It also harbours unique aquatic life, including the stygobiotic amphipod *Sternophysinx basilobata* Griffiths, 1991, known only from Kogelbeen and Boesmansgat caves. Located on private property, the cave is not open to the public and thus has limited human activity.

Peppercorn (24° 09' 31.0" S, 29° 10' 37.0" E) and Ficus caves (24° 08' 54.60" S, 29° 12' 14.15" E) are both situated on the northern slopes of the Makapansgat Valley (or Makapan Valley Fossil Hominid Sites of South Africa World Heritage Site, UNESCO), northeast of Mokopane in Limpopo province. The two caves are situated some 150 m apart and potentially share the same ground-water aquifer and are

situated top of a dolomite (Patridge, 1966). Both caves have an underground lake with amphipods species including *Sternophysinx alca* Griffiths, 1991, and *Sternophysinx robertsi* Methuen, 1911. The caves are in a provincial protected area; however, locals use the caves for religious and cultural rituals (Fig. 2).

Bakwena Cave ($25^{\circ} 53' 53.3''$ S, $28^{\circ} 13' 19.8''$ E) in Gauteng, South Africa, is located within dolomitic rock on the Irene campus of the Agricultural Research Council and is accessible to the public (Jacobs et al., 2017). This sinkhole cave is one of the few dolomitic caves in South Africa with freshwater access and allows entry by rappelling down a cone-shaped sinkhole and descending a 5-m ladder to reach the main cavern (Durang et al., 2012). The cave system includes a large main chamber with three tunnels, one of which leads to a partially submerged chamber, and is surrounded by grasslands that serve as a bat foraging area. It hosts dark-adapted species such as Natal clinging bats (*Miniopterus natalensis*), fungi

(*Aspergillus* and *Penicillium*), nematodes, and two amphipod species, *Sternophysinx filaris* and *Sternophysinx calceola* (Mluntu, 2021). The locals use for religious and cultural rituals (Fig. 2).

Boesmansgat Cave, also known as Bushman's Hole ($27^{\circ} 55' 18''$ S, $23^{\circ} 38' 30''$ E), is a renowned freshwater sinkhole in Northern Cape, South Africa, located on Mount Carmel game farm, about 55 km southeast of Kuruman. This dolomite cave, formed by underground water dissolution, is the world's third-deepest water-filled cave, reaching a depth of 283 m and attracting record-breaking divers (Beaumont & Vogel, 2006; Baglow & Mthembu, 2021). The surface pond, about 100 m wide and often covered by duckweed, is surrounded by semi-arid savannah with species like *Senegalia mellifera* (black thorn) and *Vachellia erioloba* (camel thorn) (Mluntu, 2021). The cave is a home to two co-occurring endemic subterranean amphipod species, *Sternophysinx basilobata* Griffiths, 1991, *Sternophysinx megacheles*

Fig. 2 Aerial view of **a** Boesmansgat submerged freshwater cave and plastic pollution observed in **b** Bakwena cave, **c** Peppercorn cave, and **d** Ficus cave during sample collection

Griffiths and Stewart, 1995 (see Griffiths and Stewart (2001) (Table 1)). Visitors descend a steep rock face to reach the water, where the narrow entrance opens into a large chamber extending over 200 m deep. The cave experiences pollution from atmospheric pollutants and tourism activities (Fig. 2).

Sterkfontein Cave is part of the UNESCO Fossil Hominid Sites in the Cradle of Humankind, Gauteng, South Africa ($26^{\circ} 00' 57''$ S, $27^{\circ} 44' 05''$ E), and lies 50 km northwest of Johannesburg. This limestone cave system, renowned for its ancient fossil deposits within dolomitic rock (Brink & Partridge, 1965), includes a groundwater-fed subterranean lake with a water level at approximately

1440 m above sea level (Hobbs & Meillon, 2017). The main cavern is accessible by a 15-m stairway (Tasaki, 2006; Stratford, 2017) and is surrounded by smaller caves and sinkholes, including Lincoln Cave (Reynolds et al., 2003, 2007). The cave hosts diverse species, including the wasp *Belonogaster petiolata* (Keeping, 1990), and is the type locality for the freshwater amphipod *Sternophysinx filaris* Holsinger & Straškraba, 1973 (Mlungu, 2021). Privately owned and managed, Sterkfontein offers guided tours and remains a valuable site for paleontological research, though it was temporarily closed for eight months due to unstable conditions and repairs following adverse weather.

Table 1 Summary of main features of examined freshwater caves in South Africa: Boesmansgat cave, Kogelbeen cave, Sterkfontein cave, Bakwena cave and two Makapan's caves (Peppercorn and Ficus caves)

Cave name	Distance from the surface to the freshwater	Distance to the closest city	Nature of the cave	Access (public or private)	Main human activity	Endemic amphipods species
1. Boesmansgat cave	300 m	26.56 km	Aboveground (Sinkhole)	Private, with restricted access	Diving, picnic, rock climbing	<i>Sternophysinx basilobata</i> Griffiths, 1991 <i>Sternophysinx megacheles</i> Griffiths and Stewart, 1995
2. Kogelbeen Cave	300 m to the isolated pools and 450 m to the big water pool	22.75 km	Underground	Private, access very restricted	no human activities, cave is highly secluded	<i>Sternophysinx basilobata</i> Griffiths, 1991
3. Sterkfontein cave		6.83 km	Underground	Public, relatively easy access	Tourist & paleo-research	<i>Sternophysinx filaris</i> Holsinger & Straškraba, 1973
4. Bakwena cave		249.75 m	Underground	Public now, used to be private, access is now easy	Religious & cultural rituals	<i>Sternophysinx filaris</i> Holsinger & Straškraba, 1973 <i>Sternophysinx calceola</i> Holsinger, 1992
5. Peppercorns cave		4.63 km	Underground	Public, with restricted access	Religious and cultural rituals	<i>Sternophysinx alca</i> Griffiths, 1981 and <i>Sternophysinx robertsi</i> Methuen, 1911
6. Ficus cave		4.63 km	Underground	Public, with restricted access	Religious, cultural rituals & paleo-research	<i>Sternophysinx alca</i> Griffiths, and <i>Sternophysinx robertsi</i> Methuen, 1911

Sampling collection and extraction

A total of 18 (1.5–2.0 kg) sediment samples (i.e. 6 sites \times 3 replicates = 18 sediments samples) were collected at three randomly selected stations near the water line at a depth of 5.0 ± 0.5 cm using a steel hand shovel. Sediment samples were then covered with an aluminium foil, transferred into a new labelled Ziplock bags, and transported to the laboratory for further pre-treatment and analysis. Using a 25L stainless-steel bucket (305 mm diameter), 100 L of subsurface water (equivalent to four 25 L buckets) was randomly collected at a depth ranging from 5 to 20 cm below the water surface and filtered on-site through a stacked four nylon mesh sieves of different mesh sizes of 1000, 500, 250, and 100 μm , respectively. This process was repeated three times per at each cave (6 sites \times 3 replicates = 18 water samples) following a similar approach by Qu et al. (2018). Thereafter, all four nylon mesh sieves were immediately covered with aluminium foil to prevent airborne contamination until they reached the laboratory.

To collect resident amphipod specimens, a handheld squared-shaped aquatic net (frame 30 cm \times 30 cm, mesh size 500 μm) and Multinet sampler (0.25 m^2 opening and with the standard 200 μm mesh; Hydro-Bios Kiel, Germany) were used. Amphipods from the genera *Sternophysinx* were chosen to assess MP ingestion since they are known endemic aquatic invertebrates species found in subterranean system and they are of conservation concern, thus ideal candidates to compare MP ingestion and impacts (Blarer et al., 2016). At each site ($n=6$), a total of 9 amphipods individuals (3 individuals per replicate) of similar size were collected randomly; however, this was not the case for the Boesmansgat Cave, where only a total of 5 amphipods were found and placed in a single vial. The number of amphipod samples was due to the low density across the caves. After collection, amphipods were immediately preserved in 80% ethanol solution, following Courten-Jones et al. (2017), and then transported to the laboratory.

In the laboratory, all sediment samples were weighed and then added to a 25 L stainless-steel bucket, separately, and then filled with NaCl solution (made by dissolving 1400 g NaCl in 0.6 L, density 1.22), following the density separation method which was previously

reported by Nuelle et al. (2014) and Quinn et al. (2017). The mixture was stirred vigorously for 6 min, allowing the less dense MP particles to float to the surface (Lusher et al., 2015). After settling, the supernatant was passed, through four stacked nylon mesh sieves with different sizes of 1000, 500, 250, 100 μm , respectively, and the process was repeated six times for each sample, to effectively remove available MPs from the fine sediment following Naidoo (2018). Thereafter, the nylon mesh sieves were oven-dried at 30 °C overnight prior to MP identification under a dissecting microscope. Each sieve was placed under a dissecting microscope at X50 magnifications, and MP particles observed were counted and characterised into type, size, and colours. The water sieves were also oven-dried at 30 °C overnight and thereafter inspected for MP following similar process as described above.

The collected amphipod specimens, 3 individuals per replicates were placed in three different petri dishes, weighed, and then oven-dried at 60 °C for 24 h where the total mass was noted. Oven-dried amphipods samples (three replicates of 3 dried individuals) were further placed into a single 350-mL glass vial containing 1 mL of nitric acid, including a combined 5 individuals from Boesmansgat cave and digested overnight at room temperature (Silva et al., 2022). The solution was then diluted with distilled water and filtered through Whatman membrane filters (2 μm mesh pore; 47 mm diameter); thereafter, filters were allowed to dry overnight at room temperature. Microplastic particles were identified using a microscope as described for sediments and subsurface water samples above. Microplastic particles found were reported in dry mass.

For all samples, MP particles were deemed to be MP if they possessed unnatural colouration (e.g. bright colouration, and multicoloured) and/or unnatural shape (e.g. sharp edges, perfectly spherical see Picó & Barceló, 2019). Microplastics found in samples were characterised according to types and colours following Lusher et al. (2013) and were further photographed under a Nikon ECLIPSE Ti Series inverted microscope, fitted with a DS-US camera powered by NIS-Elements BR software. However, MP retrieved from amphipods were not categorised by various size but instead by the mesh size of the membrane filter used (2 μm).

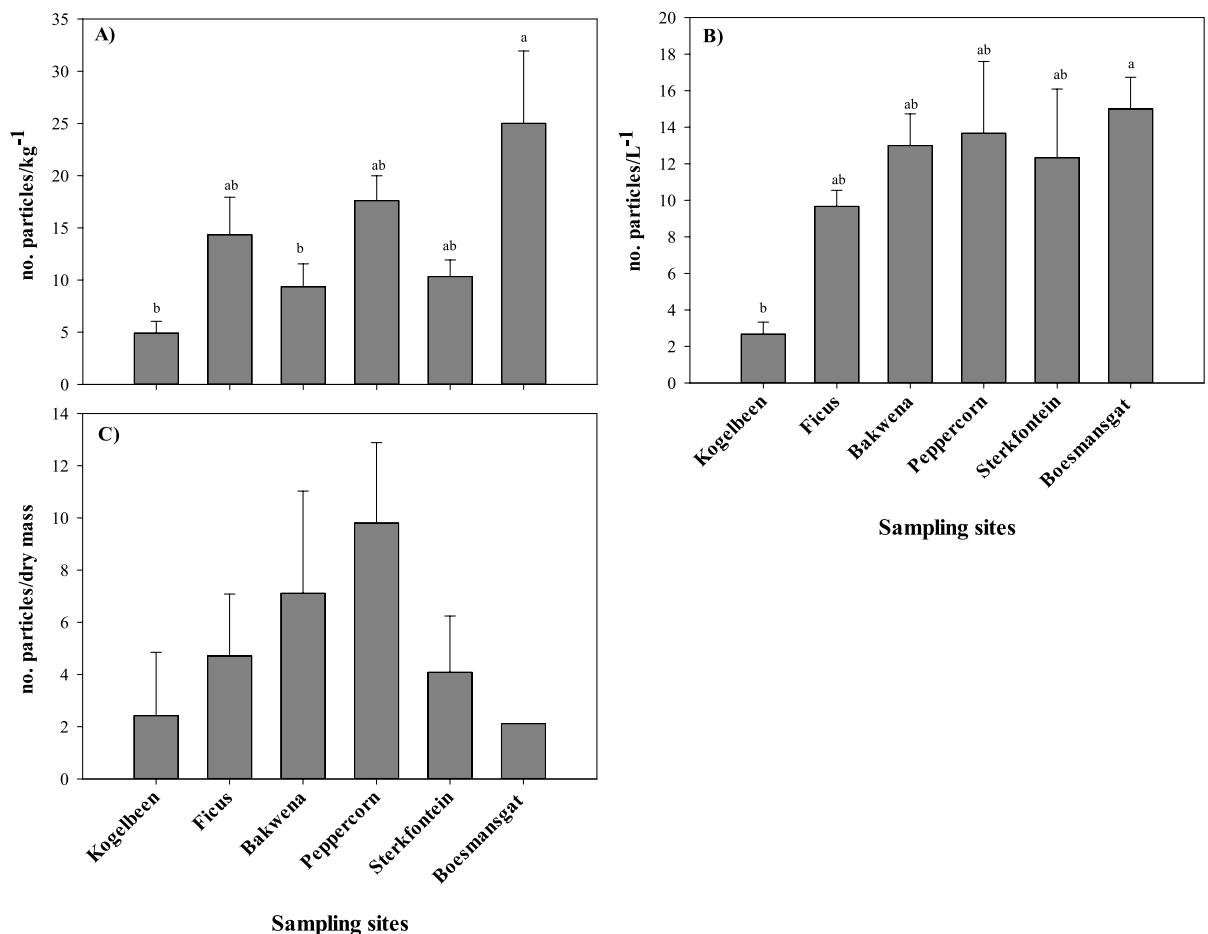
Laboratory quality control

To prevent contamination during sample preparation in the laboratory, precautionary measures were put in place during MP extraction and identification process (Bhat et al., 2024a, b). All surfaces and equipment used were rinsed with milli-Q distilled water and then dried overnight before use (Gallitelli et al., 2020). Cotton laboratory coats and polymer-free gloves were used during the laboratory to keep the process sterile; this also included avoiding the use of air-conditioners to minimise the potential risk of air-borne MP particle contamination. Filtration and identification also occurred under a laminar flow hood cabinet to restrict airborne contamination. To determine whether contamination was a confounding factor under laboratory conditions, blanks of glass microfiber filters were situated as follows: (1) open inside the laminar; (2) open in the oven, and (3) open in the laboratory next to the microscope (following Davison and Asch, 2011). Laboratory blanks were used as a “negative control” to cross-check the contamination of plastic materials. Any MP particles found in the blanks were subtracted from our results following Taurozzi et al. (2024). Extraction efficiencies were assessed by filtering known quantities of particles to verify the recovery rates of MPs, following the recommendations of Dimante-Deimantovica et al. (2022). The recovery process demonstrated an efficiency rate exceeding 95%.

Fourier transform infrared spectroscopy analyses

Fourier transform infrared (FTIR) analyses were used to confirm visual inspections of MPs (Mintenig et al., 2019). Prior to FTIR analysis, selected MP particles were treated with potassium hydroxide (KOH) for 1 h to digest any organic matter while leaving MP particles intact (Prata et al., 2019). Once the organic matter was successfully removed, the MP particles were dried thoroughly before FTIR to prevent interference from moisture. Therefore, a random subsample of MP particles, following (Martin et al., 2017), with sizes between 100 and 1000 μm were selected for polymer identification using a vibrational Platinum-ATR Fourier transform infrared spectroscopy (FTIR-ATR) (Bruker Alpha model, Germany). The analysis was conducted with a spectral range of 650–4000 cm^{-1} , at a resolution of 8 cm^{-1} , and 16 scans per analysis.

Prior to each sample analysis, background scans were performed, and the ATR crystal was cleaned with 70% propanol. All obtained spectra were compared and verified against the following databases: Hummel Polymer Sample Library, HR Polymer Additives and Plasticizers, HR Hummel Polymers and Additives, and Synthetic Fibres by Microscope.


Statistical analyses

A parametric analysis of variance (ANOVA) was used to assess differences in MP densities (sediments, subsurface waters) between the six freshwater caves after confirmation for homogeneous variances (Levene’s test, $p < 0.05$) and normality (Shapiro–Wilk test, $p > 0.05$). Additionally, a post hoc Tukey multiple comparison test was performed to identify which caves showed significant differences. All statistical analyses were performed using R Development Core Team (2018). Pearson rank correlation analysis was used to investigate the relationship between sediment and water MP densities and amphipods *Sternophysinx* sp. MP densities using SPSS version 16.0.

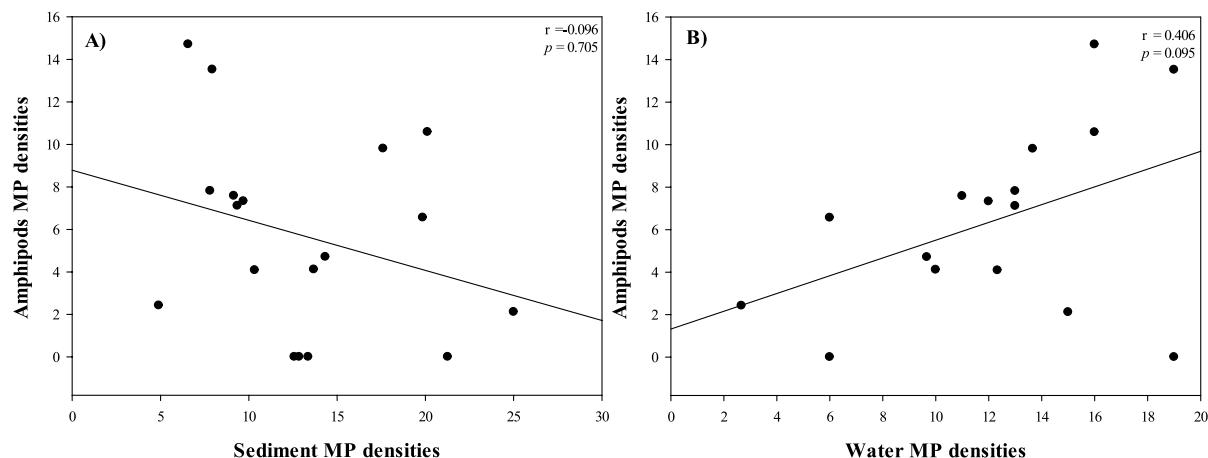
Results

Microplastics in sediments, subsurface water, and amphipods

All control samples contained no MPs, whereas MPs were found in all sediment and water samples, with an overall average density of 13.5 ± 2.0 particles/kg $^{-1}$ and 11.01 ± 1.30 particles/L $^{-1}$, respectively. Microplastics ranged between 4.9 ± 1.2 and 25.0 ± 6.9 particles/kg $^{-1}$ (Fig. 3A) and 2.7 ± 0.7 and 15.0 ± 1.7 particles/L $^{-1}$ (Fig. 3B) in sediments and water, respectively. Boesmansgat cave had the highest MP particles for both sediments (25.0 ± 6.9 particles/kg $^{-1}$) and water (15.0 ± 1.7 particles/L $^{-1}$), whereas Kogelbeen cave had the least MP particles for both sediments 4.9 ± 1.2 particles/kg $^{-1}$ and water 2.7 ± 0.7 particles/L $^{-1}$. Overall, MPs from the sediment samples were significantly different between sites ($F = 3.987$; $df = 5$; $p = 0.0023$), where only Boesmansgat cave was significantly different to Kogelbeen and Bakwena caves (Fig. 3A). Significant differences were also observed for water samples between caves ($F = 3.266$; $df = 5$; $p = 0.0432$) (see Fig. 3B).

Fig. 3 Microplastic particles (Mean \pm SD) in **a** sediments, **b** water, and **c** amphipods across six freshwater caves in South Africa

Of 50 *Sternophysinx* sp. specimen collected across six caves, 38 (76%) amphipods contained MP particles. Microplastic particles in amphipod samples had an overall average density of 5.41 ± 1.2 and ranged between 2.1 ± 0 and 9.8 ± 3.1 particles/dry mass (Fig. 3C). The highest MP particles of 9.8 ± 3.1 particles/dry mass were found in Peppercorn cave, and the lowest MP particles of 2.1 ± 0 particles/dry mass were recorded in Boesmansgat cave (Fig. 3C).


Based on Pearson correlations, there was no significant relationship ($p > 0.05$) observed for MP densities found within amphipods versus sediment and water MP densities (Fig. 4). Positive, non-significant correlations were observed for amphipods MP densities (Pearson $r = 0.406$; $p = 0.095$) and water MP densities (Pearson $r = 0.406$; $p = 0.095$) (Fig. 4B), whereas negative non-significant correlations were observed

for amphipods MP densities ($r = -0.17$, $p = 0.004$) and sediment MP densities ($r = -0.096$, $p = 0.705$) (Fig. 4A).

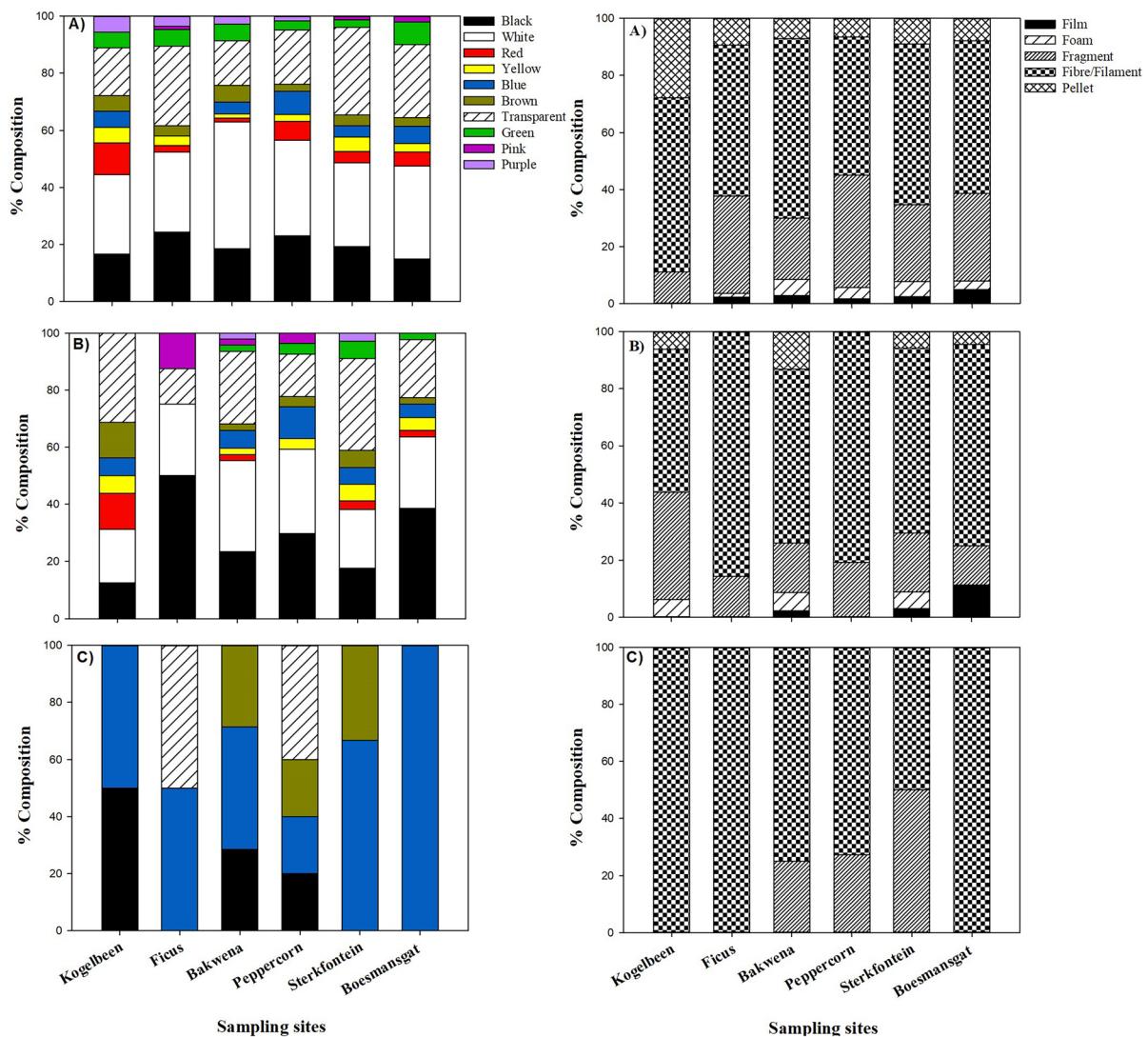
Morphological characteristics

Microplastic particle's shape, colour, and size

Fibres, filaments, and fragments were the most common MP particles found in the sediments, water, and amphipod samples (Fig. 5). A variety of MP shapes were found in sediment samples across six caves, with fibre and filament accounting for 54.2% of the total abundance of MPs, followed by fragment, pellet, foam, and film accounting for 30.8%, 8.6%, 3.6%, and 2.7%, respectively (Fig. 5A). In water samples,

Fig. 4 Relationship between MP densities in amphipods versus **a** sediment, and **b** water

fibre and filament were the most dominant MP shape, accounting for 67.1% of the total percentage composition of MP shapes, followed by fragment, pellet, foam, and film, which accounted for 19.1%, 6.4%, 4.0%, and 3.5%, respectively (Fig. 5B). In amphipod samples, three MP shapes were found i.e. fibre and filament accounting for 79.5%, followed by fragment with 20.5% of the total percentage composition of MP (Fig. 5C).


White MPs dominated both sediment and water samples, followed by black and transparent, while in amphipod samples, blue was the most identified, followed by transparent, black, and brown (Fig. 5). In sediment samples, white particles accounted for 33.1% of the total densities across caves, followed by transparent and black accounting for 23.4% and 20.0%, respectively (Fig. 5A). Water samples also demonstrated a variety of colours across caves, with white accounting for 27.3% of the total MP densities, followed by black (26.1%) and transparent (23.9%) particles (Fig. 5B). Microplastics found in amphipods were predominantly blue and white, accounting for 48.7% and 20.5%, respectively, of the total MP densities across caves (Fig. 5C). The FTIR-ATR results on selected MP particles showed that the majority of particles were represented by six polymer types i.e. polypropylene, polystyrene, polyvinyl chloride, polyethylene, polydimethylsiloxane, where polypropylene (38%) was the most dominant and the least been polydimethylsiloxane (4%).

Most MP particles in sediments were found to be around 100 μm in size (range 32.6–45.2%), followed

by 250 μm (range, 13.0–29.2%), 500 μm (range, 19.9–26.2%), and 1000 μm (range, 11.3–17.6%) (Fig. 6A). Microplastic particles from water samples followed a similar trend with different percentage ranges, that is 1000 μm (range, 12.1–27.0%), followed by 500 μm (range, 7.9–27.6%), 250 μm (range, 6.7–32.4%), and 100 μm (range, 18.9–51.1%) (Fig. 6B).

Discussion

Quantifying and characterising MP pollution in subterranean freshwater caves is crucial for establishing their impact on important below-ground habitats and water resources. South African subterranean freshwater caves in particular are not well investigated, yet they are important systems that support unique biodiversity and host important organisms such as cave-adapted crustaceans. Microplastic abundance in South African caves was found to vary across the caves and thus partially supported our hypothesis. Microplastic particles were present in sediments, subsurface waters, and amphipods in all caves, highlighting the ubiquitous nature of MP pollution and its potential to be found even in the most remote and pristine environments. Our findings indicate that these caves are experiencing significant MP pollution, and those with low to moderate land-use and human activity may be at risk of increased MP pollution in the near future. Additionally, a variety of MP shapes, colours, polymer types, and sizes were observed,

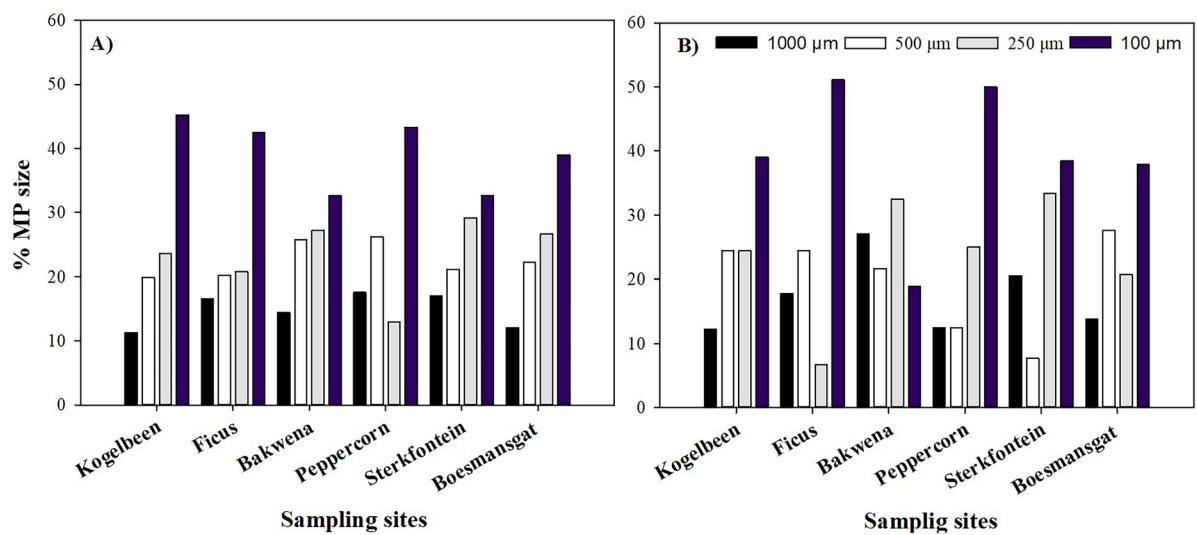


Fig. 5 The proportion of microplastic colours and types found in **a** sediment, **b** water, and **c** amphipods across six freshwater caves in South Africa

suggesting that these particles likely originated from multiple sources. There was no relationship between MP particles in amphipods versus sediment and water. As such, we speculate that amphipods may be exposed to MPs through different mechanisms, possibly by selectively ingesting contaminated food or through direct uptake from the water column, rather than directly from sediments or water.

Only a few studies have examined MPs in sediments and water from subterranean caves globally (Table S1). In the current study, MP particles found in sediments and water samples were higher

in Boesmansgat cave, while in the amphipods, MP particles were higher in Peppercorn cave. The increased MP particles in the Boesmansgat cave might be attributed to the fact that the cave is exposed to high land-use activities (e.g. picnic site, deep diving, and rock climbing) and MP atmospheric deposition, and possible flooding/runoff events since the cave is a sinkhole exposed to the landscape (Wright et al., 2020). High MP particles were also found in Bakwena cave, Peppercorn cave, and Ficus cave, which may be attributed to the use of these caves for religious and cultural activities by

Fig. 6 The percentage of microplastic sizes found in cave **a** sediment and **b** water samples across six caves in South Africa

nearby communities. Sterkfontein cave, which is a tourism exhibition centre and associated with high human visitation in and around, had high MP abundance when compared to Kogelbeen cave which was expected and in agreement to our hypothesis. Reduced MP particles in Kogelbeen cave based on our observations, might be due to limited access to the cave and restriction to the public. The overall MP found in sediments across the caves was lower than those found in other subterranean caves globally (Table S1). For instance, we found MP densities in sediments ranging from 4.9 ± 1.2 to 25.0 ± 6.9 particles/kg $^{-1}$, whereas few studies have found MP densities higher values than in the current study, for example, Balestra & Bellopede (2022) found between 2500 and 8700 items/kg; Hasenmueller et al. (2023) 842.7 ± 166.4 particles/kg $^{-1}$; and Balestra & Bellopede (2023) $1033.3\text{--}1060$ particles/kg $^{-1}$ and $666.7\text{--}1103.3$ particles/kg $^{-1}$ (see Table S1). The differences in MP densities could be related to limited human access to some caves and reduced surface contamination when compared to tourism caves studied by Balestra and Bellopede et al. (2022, 2023) which are heavily visited by humans. However, MP densities found in water samples (range, $2.7 \pm 0.7\text{--}15.0 \pm 1.7$ particles/L $^{-1}$) corresponded to those found by Valentić et al. (2022) (1.00 ± 1.48 items/m 3 and 9.55 ± 16.64 items/m 3) and Balestra et al. (2023) (12–54 particles/L $^{-1}$) (see

Table S1). This could be related to similar sampling methodologies or the levels of human activity with other studies, suggesting a potential consistency in MP sources and transport mechanisms in subterranean aquatic environments.

The detection of MP particles in sampled amphipods across all caves highlights a widespread contamination issue in subterranean freshwater caves and the potential threat to underground life and potentially entering the food chain. Due to the lack of research on MP ingestion by amphipods in freshwater caves, comparing our results with different studies can be difficult. Amphipods, a key player in cave ecosystems, can ingest these MPs as seen in the current study, possibly leading to physical blockage, reduced food intake, and exposure to toxins. This disruption can cascade through the food web, affecting other species of bats and amphibians that rely on amphipods as a food source, and ultimately threatening the delicate balance and biodiversity of cave ecosystems (Mateos-Cárdenas et al., 2020). Microplastics found in amphipods in the current study did not vary among the caves. The uniform distribution suggests that MPs are pervasive in the broader environment, infiltrating their remoteness or level of human activity. Consequently, it highlights the extensive reach of MP contamination and the necessity for global efforts to address the sources and impact of MPs, even in seemingly pristine and untouched habitats.

Microplastics in sediments, water, and amphipod samples were also observed in different shapes, colours, and sizes. Fibres and filaments were the most dominant types in sediment, water, and amphipods. Our findings corresponded with other studies that found fibres and filament as the most abundant MP types in freshwater caves. For instance, Balestra et al. (2023) found fibres as the most abundant type in the waters of Bossea cave, and Balestra & Bellopede (2023) further observed fibres and filament as the most dominant type in Toirano caves, in Italy. High ingestion of fibres by amphipods corresponds with findings by Jamieson et al. (2019) who found high levels of fibres particles in amphipods. Redondo-Hasselerharm et al. (2018a, b) also reported majority of fibres in aquatic organisms. With regard to colours, white was abundant in sediment and water, and blue particles was predominant in amphipods. Various MP colours often provide visual clues about their origins or sources (Lusher et al., 2020). Different studies have found high white MP particles in sediments (Díaz-Jaramillo et al., 2021; Singh et al., 2021) and waters (Han et al., 2020). Additionally, blue MPs have also been found to be among the most preferred colour by organisms (Rios et al., 2022). The high blue particles in amphipods might be due to blue particles resembling food sources and the ability of blue light to penetrate deeper into water, making them more visible to amphipods, potentially increasing their likelihood of ingestion (Zhang et al., 2021). The MP size variations found were similar to those described for cave sediments (Balestra & Bellopede, 2022). The variation of MP particles offers some insight into their movement in caves. The MP sizes found in sediments were similar to those found in water samples. This might be a result of surface water migrating to the underground environments via sinkholes and rapidly entering the cervices and fractures, thus reaching the underground waters and settling into the sediments. During their movement, larger MP would be impeded, while smaller MP particles would reach the bottom of the cave. Microplastics found in sediments, water, and amphipods included polypropylene and polystyrene. Based on our observation during sampling across the caves, the polymer types found could be due to improper waste disposal, tourism, and the use of plastic packaging in nearby industries and settlements associated with each cave (Gutiérrez-Rial et al., 2024). These polymer types have also been identified

in other freshwater caves (see Novruzzade, 2022; Balestra & Bellopede, 2023) and are possible sources from packaging industries, personal care products, and urban sewage. Furthermore, the persistence of these polymers in cave environments highlights limited degradation rates and potential accumulation over time, which may be exacerbated by inadequate waste management practices and occasional flooding events that transport plastic debris from surface areas into subterranean systems.

Microplastic assessment in freshwater caves is essential due to their role as unique and sensitive ecosystems. As indicated by Hasenmueller et al. (2023), freshwater caves, often considered pristine environments, are increasingly threatened by MP pollution. Human usage, atmospheric depositions, and flooding events in the sinkhole caves were observed to be the lead source of MP pollution in the current study. Our findings also suggest that freshwater caves that are not protected and well-managed are potentially at high risk of MP pollution and accumulation. This was evident with Bakwena, Peppercorns, and Ficus caves, which are accessible anytime and are mostly used by nearby communities for religious and cultural rituals. We project that MPs in these caves will be high in the near future due to the persistent degradation of plastic particles initially introduced by humans. Over time, these particles, often derived from synthetic textiles and other human-made materials, will continue to break down into smaller fragments, thus increasing the MP pollution within these secluded caves. Microplastics were found in less utilised and inaccessible caves, such as Kogelbeen cave, indicating the ubiquitous nature of MP pollution, and raising concerns about the extent of widespread distribution and persistence of plastic debris in subterranean ecosystems. With Kogelbeen cave being exposed to flooding events, flooding will significantly continue to contribute to MP pollution by transporting surface contaminates from surrounding areas, carrying them through the surface runoff and depositing them in the cave sediment and water, and eventually getting ingested by aquatic biota.

Further studies assessing MP ingestion in freshwater caves are essential to elucidate MP impacts in subterranean aquatic organisms. Microplastic ingestion in rivers, lakes, and wetlands is also essential to understanding the broader environmental and ecological impacts of MP pollution, as these freshwater

systems are key habitats for diverse species. For instance, MP ingestion by amphipods could have implications for higher trophic levels within the ecosystem, thus highlighting the potential ecological consequences of plastic pollution in freshwater caves. Freshwater caves are often neglected when implementing conservation measures. These freshwater caves provide water to various inland environments, sustaining aquatic life, as well as contributing to the overall water cycle, and providing resources for surrounding habitats. As such, assessing the potential threat of MPs in freshwater caves and encouraging conservation measures, while providing recommendations for future studies is required.

Like other ecological studies, this research faced several limitations. Sampling methods were adapted from the literature due to a lack of standardised protocols, which may limit comparability with studies using different methods and units. Additionally, the mesh size used in this study may not have captured all MP since MP ranges from 1 to <5 -micron particles, potentially underrepresenting the overall MP load. Low amphipod densities also restricted us to collecting only a small number of individuals per cave to avoid impacting local populations. Amphipods were treated with nitric acid to analyse MP ingestion, which can degrade or alter certain polymers (Roch & Brinker, 2017; Gulizia et al., 2022), potentially underrepresenting the diversity and abundance of MPs. Future studies should consider alternative digestion protocols, such as potassium hydroxide (KOH) or enzymatic methods, to better preserve a range of polymer types. Nonetheless, our results provide a solid evidence and insight together with a foundation for understanding the occurrence, distribution, and concentrations of MPs in freshwater caves, providing essential baseline data for future research and method standardisation to assess MP pollution in these ecosystems.

Conclusion

To the best of our knowledge, this is the first study to investigate MPs pollution in sediments, subsurface waters, and amphipods across six South African freshwater caves. Microplastics were found in sediments, subsurface waters, and amphipods and vary based on human usage, with caves associated

with high human usage having highest MP densities. Given the presence of various MPs shapes, colours, sizes, and polymer types, the sources of the MP particles found in the caves strongly suggest they originated from various pollutants; however, surface atmospheric deposition, runoff, tourists, and religious and cultural rituals may also be a source based on our observations. If these caves progressively get damaged to such a degree that their unique species and delicate ecosystems are destroyed, it will result in the disappearance of irreplaceable biodiversity and loss of vital natural habitats. Future studies are needed to document MP dynamics, identifying the sources and fate in more freshwater caves. Surface and subterranean environments are closely connected; therefore, greater efforts should be made to establish more comprehensive measures of protection. Here we have also shown that amphipod specimens from the genus *Sternophysinx* sp. accumulate MPs and that there is no relation between sediment and water MP densities and those found within the amphipods. Further studies should investigate the potential pathways of MPs accumulation in amphipods, including the role of trophic transfer, ingestion behaviour, and habitat preferences.

Acknowledgements We thank Kgahliso Matebese and Sanele Ndawande for assisting during field work. Marietjie Smit of the Northern Cape Department of Agriculture, Environmental Affairs, Rural Development and Land Reform is thanked for kindly facilitating scientific permits (Permit No: 0879/2023), and Paballo Mohafa, Cebisa Mdekazi, and Andrew Pheiffer for arranging access for us in the Cradle of Humankind and Sello Lucas Sekowe for escorting us inside the cave. We thank colleagues (Norman Maiwashe, James Joubert, Dieketseng Mosia, Ben Greyling, Riana Jacobs-Venter, Robin Lyle) at the ARC for facilitating access for us in Bakwena cave. The work described in this paper was financially supported by Rhodes University Research Council.

Author contributions TM helped in conceptualisation, formal analysis, investigation, methodology, software, writing—original draft, writing—review and editing. SNM contributed to conceptualisation, investigation, methodology, validation, visualisation, writing—original draft, writing—review and editing. TN was involved in formal analysis, software, validation, visualisation, writing—original draft, writing—review and editing. ZM helped in methodology, validation, visualisation, writing—original draft, writing—review and editing. MCM contributed to conceptualisation, formal analysis, investigation, methodology, funding acquisition, writing—original draft, writing—review and editing.

Funding Open access funding provided by Rhodes University.

Data availability Data generated or analysed during this study are available from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

Baglow, N. & P. Mthembu, 2021. Sinkholes, springs and early shelters. *Quest* 17: 18–21.

Balestra, V. & R. Bellopede, 2022. Microplastic pollution in show cave sediments: first evidence and detection technique. *Environmental Pollution* 292: 118261. <https://doi.org/10.1016/j.envpol.2021.118261>.

Balestra, V. & R. Bellopede, 2023. Microplastics in caves: a new threat in the most famous geo-heritage in the world. Analysis and comparison of Italian show caves deposits. *Journal of Environmental Management* 342: 118189. <https://doi.org/10.1016/j.jenvman.2023.118189>.

Balestra, V., B. Vigna, S. De Costanzo & R. Bellopede, 2023. Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. *Journal of Contaminant Hydrology* 252: 104117. <https://doi.org/10.1016/j.jconhyd.2022.104117>.

Barboza, L. G. A., A. D. Vethaak, B. R. Lavorante, A. K. Lundebjø & L. Guilhermino, 2018. Marine microplastic debris: an emerging issue for food security, food safety and human health. *Marine Pollution Bulletin* 133: 336–348. <https://doi.org/10.1016/j.marpolbul.2018.05.047>.

Beaumont, P. B. & J. C. Vogel, 2006. On a timescale for the past million years of human history in central South Africa. *South African Journal of Science* 102: 217–228.

Bhat, M. A., E. O. Gaga & K. Gedik, 2024a. How can contamination be prevented during laboratory analysis of atmospheric samples for microplastics? *Environmental Monitoring and Assessment* 196: 159. <https://doi.org/10.1007/s10661-024-12345-3>.

Bhat, M. A., E. O. Gaga & K. Gedik, 2024b. How can contamination be prevented during laboratory analysis of atmospheric samples for microplastics? *Environmental Monitoring and Assessment* 196: 159.

Blarer, P. & P. Burkhardt-Holm, 2016. Microplastics affect assimilation efficiency in the freshwater amphipod *Gammarus fossarum*. *Environmental Science and Pollution Research* 23: 23522–23532. <https://doi.org/10.1007/s11356-016-7584-2>.

Borrelle, S. B., J. Ringma, K. L. Law, C. C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G. H. Leonard, M. A. Hilleary & M. Eriksen, 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. *Science* 369: 1515–1518. <https://doi.org/10.1126/science.aba3656>.

Boucher, J. & D. Friot, 2017. Primary Microplastics in the Oceans: A Global Evaluation of Sources, Vol. 10. Iucn, Gland: <https://doi.org/10.2305/IUCN.CH.2017.01.en>.

Brink, A. B. A. & T. C. Partridge, 1965. Transvaal karst: some considerations of development and morphology, with special reference to sinkholes and subsidences on the Far West Rand. *South African Geographical Journal* 47: 11–34. <https://doi.org/10.1080/03736245.1965.10559398>.

Cantonati, M., L. E. Stevens, S. Segadelli, A. E. Springer, N. Goldscheider, F. Celico, M. Filippini, K. Ogata & A. Gargini, 2020. Ecohydrogeology: the interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater-dependent habitats, biota, and ecosystems. *Ecological Indicators* 110: 105803. <https://doi.org/10.1016/j.ecolind.2019.105803>.

Chia, R. W., J. Y. Lee, H. Kim & J. Jang, 2021. Microplastic pollution in soil and groundwater: a review. *Environmental Chemistry Letters* 19: 4211–4224. <https://doi.org/10.1007/s10311-021-01297-6>.

Chiarini, V., J. Duckeck & J. De Waele, 2022. A global perspective on sustainable show cave tourism. *Geoheritage* 14: 82. <https://doi.org/10.1007/s12371-022-00717-5>.

Courtene-Jones, W., B. Quinn, S. F. Gary, A. O. Mogg & B. E. Narayanaswamy, 2017. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. *Environmental Pollution* 231: 271–280. <https://doi.org/10.1016/j.envpol.2017.08.026>.

Culver, D. C. & T. Pipan, 2019. *The Biology of Caves and Other Subterranean Habitats*, Oxford University Press, Oxford:

Dalu, T., T. Banda, T. Mutshekwa, L. F. Munyai & R. N. Cuthbert, 2021. Effects of urbanisation and a wastewater treatment plant on microplastic densities along a subtropical river system. *Environmental Science and Pollution Research* 28: 36102–36111. <https://doi.org/10.1007/s11356-021-13185-1>.

Davison, P. & R. G. Asch, 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. *Marine Ecology Progress Series* 432: 173–180. <https://doi.org/10.3354/meps09142>.

Díaz-Jaramillo, M., M. S. Islas & M. Gonzalez, 2021. Spatial distribution patterns and identification of microplastics on intertidal sediments from urban and semi-natural SW Atlantic estuaries. *Environmental Pollution* 273: 116398. <https://doi.org/10.1016/j.envpol.2020.116398>.

Dimante-Deimantovica, I., N. Suhareva, M. Barone, I. Putnani Mane & J. Aigars, 2022. Hide-and-seek: threshold values and contribution towards better understanding of recovery rate in microplastic research. *MethodsX* 9: 101603. <https://doi.org/10.1016/j.mex.2021.101603>.

Du Preez, G. C., 2014. Determining the effect of polluted mine water on the ecosystem health of a karstic cave environment in the Witwatersrand Basin (Doctoral dissertation, North-West University). <http://hdl.handle.net/10394/15933>

Durand, F., Swart, A., Marais, W., van Rensburg, C.J., Habig, J., Dippenaar-Schoeman, A., Ueckermann, E., Jacobs, R., De Wet, L., Tiedt, L., & Venter, E., 2012. The karst ecology of the Bakwena Cave (Gauteng)/Die karst-ekologie van die Bakwenagrot (Gauteng). *Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie*. 31.

Durand, J. F., 2008. Die karst-ekologie van Suid-Afrika met spesiale verwysing na die Wieg van die Mensdom Wêrelderfenisgebied. *Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie*, 27.

Durand, J. F., J. Meeuvis & M. Fourie, 2010. The threat of mine effluent to the UNESCO status of the Cradle of Humankind World Heritage Site. *TD: the Journal for Transdisciplinary Research in Southern Africa* 6: 73–92.

Faith, J. T., B. M. Chase & D. M. Avery, 2019. Late Quaternary micromammals and the precipitation history of the southern Cape, South Africa. *Quaternary Research* 91: 848–860. <https://doi.org/10.1017/qua.2018.105>.

Ferreira, R. L., G. Giribet, G. Du Preez, O. Ventouras, C. Janion & M. S. Silva, 2020. The Wynberg cave system, the most important site for cave fauna in South Africa at risk. *Subterranean Biology* 36: 73–81. <https://doi.org/10.3897/subtbl.36.60162>.

Foster, S. S. D. & P. J. Chilton, 2003. Groundwater: the processes and global significance of aquifer degradation. *Philosophical Transactions of the Royal Society of London. Series b: Biological Sciences* 358: 1957–1972. <https://doi.org/10.1098/rstb.2003.1380>.

Frias, J. P. & R. Nash, 2019. Microplastics: finding a consensus on the definition. *Marine Pollution Bulletin* 138: 145–147. <https://doi.org/10.1016/j.marpolbul.2018.11.022>.

Gallitelli, L., A. Cera, M. Scalici, A. Sodo, M. Di Gioacchino, B. Luzzi, F. Hortas, A. J. Green & C. Coccia, 2024. Plastic ingestion in aquatic insects: implications of waterbirds and landfills and association with stable isotopes. *Science of the Total Environment* 954: 176707. <https://doi.org/10.1016/j.scitotenv.2024.176707>.

Gallitelli, L., G. Cesarini, A. Cera, M. Sighicelli, F. Lecce, P. Menegoni & M. Scalici, 2020. Transport and deposition of microplastics and mesoplastics along the river course: a case study of a small river in Central Italy. *Hydrology* 7: 90. <https://doi.org/10.3390/hydrology7040090>.

Griebler, C. & M. Avramov, 2015. Groundwater ecosystem services: a review. *Freshwater Science* 34: 355–367.

Griffiths, C. L., 1991. Two new crangonyctoid amphipods from southern African caves (Crustacea). *Cimbebasia* 13: 81–89.

Griffiths, C. L. & B. A. Stewart, 2001. Amphipoda. In Day, J. A., I. J. de Moore & A. E. Louw (eds), *Guides to the Freshwater Invertebrates of Southern Africa*, Volume 4: Crustacea. 3 Water Research Commission, Pretoria: 28–49.

Gulizia, A. M., E. Brodie, R. Daumuller, S. B. Bloom, T. Corbett, M. M. Santana, C. A. Motti & G. Vamvounis, 2022. Evaluating the effect of chemical digestion treatments on polystyrene microplastics: recommended updates to chemical digestion protocols. *Macromolecular Chemistry and Physics* 223: 2100485. <https://doi.org/10.1002/macp.202100485>.

Gutiérrez-Rial, D., I. Villar, R. Álvarez-Troncoso, B. Soto, S. Mato & J. Garrido, 2024. Assessment of microplastic pollution in river ecosystems: effect of land use and biotic indices. *Water* 16: 1369. <https://doi.org/10.3390/w16101369>.

Han, M., X. Niu, M. Tang, B. T. Zhang, G. Wang, W. Yue, X. Kong & J. Zhu, 2020. Distribution of microplastics in surface water of the lower Yellow River near estuary. *Science of the Total Environment* 707: 135601. <https://doi.org/10.1016/j.scitotenv.2019.135601>.

Hasenmueller, E. A., T. Baraza, N. F. Hernandez & C. R. Finegan, 2023. Cave sediment sequesters anthropogenic microparticles (including microplastics and modified cellulose) in subsurface environments. *Science of the Total Environment* 893: 164690. <https://doi.org/10.1016/j.scitotenv.2023.164690>.

Henry, B., K. Laitala & I. G. Klepp, 2019. Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment. *Science of the Total Environment* 652: 483–494. <https://doi.org/10.1016/j.scitotenv.2018.10.166>.

Herries, A. I., J. M. Martin, A. B. Leece, J. W. Adams, G. Boschian, R. Joannes-Boyau, T. R. Edwards, T. Mallatt, J. Massey, A. Murszewski & S. Neubauer, 2020. Contemporaneity of *Australopithecus*, *Paranthropus*, and early *homo erectus* in South Africa. *Science* 368: eaaw7293. <https://doi.org/10.1126/science.aaw7293>.

Herselman, J. C. & P. M. Norton, 1985. The distribution and status of bats (Mammalia: Chiroptera) in the Cape Province. *Annals of the Cape Provincial Museums. Natural History* 16: 73–126.

Hobbs, P. & N. De Meillon, 2017. Hydrogeology of the Sterkfontein Cave System, Cradle of Humankind, South Africa. *South African Journal of Geology* 120: 403–420. <https://doi.org/10.25131/gssajg.120.3.403>.

Holsinger, J. R., 1973. A new genus and two new species of subterranean amphipod crustaceans (Gammaridae) from South Africa. *Annales De Spéléologie* 28: 69–79. <https://doi.org/10.12782/specdiv.13.275>.

Holsinger, J. R., 1992. Sternophysingidae, a new family of subterranean amphipods (Gammaridea: Crangonyctoidea) from South Africa, with description of *Sternophysix calceola*, new species, and comments on phylogenetic and biogeographic relationships. *Journal of Crustacean Biology* 12: 111–124. <https://doi.org/10.2307/1548726>.

Irish, J. & E. Marais, 2002. Caves of the Northern Cape, South Africa: a baseline study: the Caves. Navorsinge Van Die Nasionale Museum Researches of the National Museum 18: 15–29.

Jacobs, A., D. Msimang & E. Venter, 2017. First survey of the fungi from the Bakwena Cave in South Africa suggests low human disturbance. *Journal of Cave and Karst Studies*. <https://doi.org/10.4311/2016MB0146>.

Jamieson, A. J., L. S. R. Brooks, W. D. Reid, S. B. Piertney, B. E. Narayanaswamy & T. D. Linley, 2019. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. *Royal Society Open Science* 6: 180667. <https://doi.org/10.1098/rsos.180667>.

Jasechko, S. & D. Perrone, 2021. Global groundwater wells at risk of running dry. *Science* 372: 418–421. <https://doi.org/10.1126/science.abc2755>.

Jiang, C., L. Yin, Z. Li, X. Wen, X. Luo, S. Hu, H. Yang, Y. Long, B. Deng, L. Huang & Y. Liu, 2019. Microplastic pollution in the rivers of the Tibet Plateau. *Environmental Pollution* 249: 91–98. <https://doi.org/10.1016/j.envpol.2019.03.022>.

Kajee, M., H. F. Dallas, C. L. Griffiths, C. J. Kleynhans & J. M. Shelton, 2023. The status of South Africa's freshwater fish fauna: a spatial analysis of diversity, threat, invasion, and protection. *Fishes* 8: 571. <https://doi.org/10.3390/fishes8120571>.

Keeping, M. G., 1990. Colony foundation and nestmate recognition in the social wasp, *Belonogaster petiolata*. *Ethology* 85: 1–12. <https://doi.org/10.1111/j.1439-0310.1990.tb00380.x>.

Khant, N. A. & H. Kim, 2022. Review of current issues and management strategies of microplastics in groundwater environments. *Water* 14: 1020. <https://doi.org/10.3390/w14071020>.

Khatri, N. & S. Tyagi, 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. *Front Life Sciences* 8: 23–39. <https://doi.org/10.1080/21553769.2014.933716>.

Lusher, A. L., I. L. N. Bråte, K. Munno, R. R. Hurley & N. A. Welden, 2020. Is it or isn't it: the importance of visual classification in microplastic characterization. *Applied Spectroscopy* 74: 1139–1153. <https://doi.org/10.1177/0003702820930733>.

Lusher, A. L., M. McHugh & R. C. Thompson, 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. *Marine Pollution Bulletin* 67: 94–99. <https://doi.org/10.1016/j.marpolbul.2012.11.028>.

Lusher, A. L., V. Tirelli, I. O'Connor & R. Officer, 2015. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. *Scientific Reports* 5: 14947. <https://doi.org/10.1038/srep14947>.

Ma, H., S. Pu, S. Liu, Y. Bai, S. Mandal & B. Xing, 2020. Microplastics in aquatic environments: toxicity to trigger ecological consequences. *Environmental Pollution* 261: 114089. <https://doi.org/10.1016/j.envpol.2020.114089>.

Mammola, S., E. Piano, P. Cardoso, P. Vernon, D. Domínguez-Villar, D. C. Culver, T. Pipan & M. Isaia, 2019. Climate change going deep: the effects of global climatic alterations on cave ecosystems. *Anthropocene Review* 6: 98–116. <https://doi.org/10.1177/2053019619851594>.

Mammola, S., M. B. Meierhofer, P. A. Borges, R. Colado, D. C. Culver, L. Deharveng, T. Delić, T. Di Lorenzo, T. Dražina, R. L. Ferreira & B. Fiasca, 2022. Towards evidence-based conservation of subterranean ecosystems. *Biological Reviews* 97: 1476–1510. <https://doi.org/10.1111/brv.12851>.

Martin, J., A. Lusher, R. C. Thompson & A. Morley, 2017. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. *Scientific Reports* 7: 10772. <https://doi.org/10.1038/s41598-017-11079-2>.

Mateos-Cárdenas, A., J. O'Halloran, F. N. van Pelt & M. A. Jansen, 2020. Rapid fragmentation of microplastics by the freshwater amphipod *Gammarus duebeni* (Lillj.). *Scientific Reports* 10: 12799. <https://doi.org/10.1038/s41598-020-69635-2>.

Mbedzi, R., R. N. Cuthbert, R. J. Wasserman, F. M. Murungweni & T. Dalu, 2020. Spatiotemporal variation in microplastic contamination along a subtropical reservoir shoreline. *Environmental Science and Pollution Research* 27: 23880–23887. <https://doi.org/10.1007/s11356-020-08640-4>.

Miguez-Macho, G. & Y. Fan, 2012. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. *Journal of Geophysical Research: Atmospheres*. <https://doi.org/10.1029/2012JD017539>.

Mintenig, S. M., M. G. Löder, S. Primpke & G. Gerdts, 2019. Low numbers of microplastics detected in drinking water from ground water sources. *Science of the Total Environment* 648: 631–635. <https://doi.org/10.1016/j.scitotenv.2018.08.178>.

Mlungu, Z., 2021. The enigmatic subterranean amphipod genus (*sternophysinx*: *sternophysingidae*): conservation and systematics (Unpublished MSc Dissertation, Rhodes University).

Moldovan, O. T., S. Bercea, R. Năstase-Bucur, S. Constantin, M. Kenesz, I. C. Mirea, A. Petculescu, M. Robu & R. A. Arghir, 2020. Management of water bodies in show caves: a microbial approach. *Tourism Management* 78: 104037. <https://doi.org/10.1016/j.tourman.2019.104037>.

Mutshekwa, T., L. F. Munyai, L. Mugwedi, R. N. Cuthbert, F. Dondofema & T. Dalu, 2023. Seasonal occurrence of microplastics in sediment of two South African recreational reservoirs. *Water Biology and Security* 2: 100185. <https://doi.org/10.1016/j.watbs.2023.100185>.

Naidoo, T., 2018. Microplastic concentrations on the urban coastline of KwaZulu-Natal, South Africa, and its impact on juvenile fish (Doctoral dissertation, University of KwaZulu-Natal).

Naidoo, T., D. Glassom & A. J. Smit, 2015. Plastic pollution in five urban estuaries of KwaZulu-Natal, South Africa. *Marine Pollution Bulletin* 101: 473–480. <https://doi.org/10.1016/j.marpolbul.2015.09.044>.

Nava, V., S. Chandra, J. Aherne, M. B. Alfonso, A. M. Antão-Geraldes, K. Attermeyer, R. Bao, M. Bartrons, S. A. Berger, M. Biernaczky & R. Bissen, 2023. Plastic debris

in lakes and reservoirs. *Nature* 619: 317–322. <https://doi.org/10.1038/s41586-023-06168-4>.

Nel, H. A., T. Dalu & R. J. Wasserman, 2018. Sinks and sources: assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. *Science of the Total Environment* 612: 950–956. <https://doi.org/10.1016/j.scitotenv.2017.08.298>.

Nuelle, M. T., J. H. Dekiff, D. Remy & E. Fries, 2014. A new analytical approach for monitoring microplastics in marine sediments. *Environmental Pollution* 184: 161–169. <https://doi.org/10.1016/j.envpol.2013.07.027>.

Ogonowski, M., Z. Gerdes & E. Gorokhova, 2018. What we know and what we think we know about microplastic effects—a critical perspective. *Current Opinion in Environmental Science and Health* 1: 41–46. <https://doi.org/10.1016/j.coesh.2017.09.001>.

Panno, S. V., W. R. Kelly, J. Scott, W. Zheng, R. E. McNeish, N. Holm, T. J. Hoellein & E. L. Baranski, 2019. Microplastic contamination in karst groundwater systems. *Groundwater* 57: 89–196. <https://doi.org/10.1111/gwat.12862>.

Picó, Y. & D. Barceló, 2019. Analysis and prevention of microplastics pollution in water: current perspectives and future directions. *ACS Omega* 4: 6709–6719. <https://doi.org/10.1021/acsomega.9b00222>.

Pinheiro, L. M., V. O. Agostini, A. R. A. Lima, R. D. Ward & G. L. L. Pinho, 2021. The fate of plastic litter within estuarine compartments: an overview of current knowledge for the transboundary issue to guide future assessments. *Environmental Pollution* 279: 116908. <https://doi.org/10.1016/j.envpol.2021.116908>.

Plastics Europe, 2022. Plastics—the facts 2022. An analysis of European plastics production, demand and waste data https://plasticseurope.org/wp-content/uploads/2023/03/PE-PLASTICS-THE-FACTS_FINAL_DIGITAL-1.pdf (2022), Accessed 23th April 2024.

Prata, J. C., J. P. da Costa, A. V. Girão, I. Lopes, A. C. Duarte & T. Rocha-Santos, 2019. Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. *Science of the Total Environment* 686: 131–139. <https://doi.org/10.1016/j.scitotenv.2019.05.456>.

Pretorius, M., W. Markotter & M. Keith, 2021. Assessing the extent of land-use change around important bat-inhabited caves. *BMC Zoology* 6: 1–12. <https://doi.org/10.1016/j.scitotenv.2019.02.132>.

Qu, X., L. Su, H. Li, M. Liang & H. Shi, 2018. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. *Science of the Total Environment* 621: 679–686. <https://doi.org/10.1016/j.scitotenv.2017.11.284>.

Quinn, B., F. Murphy & C. Ewins, 2017. Validation of density separation for the rapid recovery of microplastics from sediment. *Analytical Methods* 9: 1491–1498. <https://doi.org/10.1039/C6AY02542K>.

R Core Team., 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>. Accessed 17th April 2024.

Redondo-Hasselerharm, P. E., D. Falahudin, E. T. Peeters & A. Koelmans, 2018a. Microplastic effect thresholds for freshwater benthic macroinvertebrates. *Environmental Science and Technology* 52: 2278–2286. <https://doi.org/10.1021/acs.est.7b05367>.

Redondo-Hasselerharm, P. E., D. Falahudin, E. T. Peeters & A. A. Koelmans, 2018b. Microplastic effect thresholds for freshwater benthic macroinvertebrates. *Environmental Science and Technology* 52: 2278–2286. <https://doi.org/10.1021/acs.est.7b05367>.

Reiss, J., D. M. Perkins, K. E. Fussmann, S. Krause, C. Canhoto, P. Romeijn & A. L. Robertson, 2019. Groundwater flooding: ecosystem structure following an extreme recharge event. *Science of the Total Environment* 652: 1252–1260. <https://doi.org/10.1016/j.scitotenv.2018.10.216>.

Reynolds, S. C., J. C. Vogel, R. J. Clarke & K. A. Kuman, 2003. Preliminary results of excavations at Lincoln Cave, Sterkfontein, South Africa: preliminary research reports: human origins research in South Africa. *South African Journal of Science* 99: 286–288.

Reynolds, S. C., R. J. Clarke & K. A. Kuman, 2007. The view from the Lincoln Cave: mid-to late Pleistocene fossil deposits from Sterkfontein hominid site, South Africa. *Journal of Human Evolution* 53: 260–271. <https://doi.org/10.1016/j.jhevol.2007.02.004>.

Ríos, J. M., G. Tesitore & F. T. de Mello, 2022. Does color play a predominant role in the intake of microplastics fragments by freshwater fish: an experimental approach with *Psalidodon eigenmanniorum*. *Environmental Science and Pollution Research* 29: 49457–49464. <https://doi.org/10.1007/s11356-022-20913-8>.

Roch, S. & A. Brinker, 2017. Rapid and efficient method for the detection of microplastic in the gastrointestinal tract of fishes. *Environmental Science and Technology* 5: 4522–4530. <https://doi.org/10.1021/acs.est.7b00364>.

Rochman, C. M. & T. Hoellein, 2020. The global odyssey of plastic pollution. *Science* 368: 1184–1185. <https://doi.org/10.1126/science.abc4428>.

Saccò, M., A. Blyth, P. W. Bateman, Q. Hua, D. Mazumder, N. White, W. F. Humphreys, A. Laini, C. Griebler & K. Grice, 2019. New light in the dark—a proposed multidisciplinary framework for studying functional ecology of groundwater fauna. *Science of the Total Environment* 662: 963–977. <https://doi.org/10.1016/j.scitotenv.2019.01.296>.

Sánchez-Fernández, D., D. M. Galassi, J. J. Wynne, P. Cardoso & S. Mammola, 2021. Don't forget subterranean ecosystems in climate change agendas. *Nature Climate Change* 11: 458–459. <https://doi.org/10.1038/s41558-021-01057-y>.

Schmidt, S. I. & H. J. Hahn, 2012. What is groundwater and what does this mean to fauna? An opinion. *Limnologica* 42: 1–6. <https://doi.org/10.1016/j.limno.2011.08.002>.

Sforzi, L., A. Tabilio Di Camillo, T. Di Lorenzo, D. M. P. Galassi, V. Balestra, L. Piccini, S. B. Cabiglieri, S. Ciattini, M. Laurati, D. Chelazzi & T. Martellini, 2024. (Micro-) plastics in saturated and unsaturated groundwater bodies: first evidence of presence in groundwater fauna and habitats. *Sustainability* 16: 2532. <https://doi.org/10.3390/su16062532>.

Sharratt, N. J., M. D. Picker & M. J. Samways, 2000. The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. *Biodiversity and Conservation* 9: 107–143. <https://doi.org/10.1023/A:1008968518058>.

Silva, S. A., A. C. Rodrigues, T. Rocha-Santos, A. L. P. Silva & C. Gravato, 2022. Effects of polyurethane small-sized microplastics in the chironomid, *Chironomus riparius*: responses at organismal and sub-organismal levels. *International Journal of Environmental Research and Public Health* 19: 15610. <https://doi.org/10.3390/ijerph192315610>.

Singh, N., A. Mondal, A. Bagri, E. Tiwari, N. Khandelwal, F. A. Monikh & G. K. Darbha, 2021. Characteristics and spatial distribution of microplastics in the lower Ganga River water and sediment. *Marine Pollution Bulletin* 163: 111960. <https://doi.org/10.1016/j.marpolbul.2020.111960>.

Singh, S. & A. Bhagwat, 2022. Microplastics: a potential threat to groundwater resources. *Groundwater for Sustainable Development* 19: 100852. <https://doi.org/10.1016/j.gsd.2022.100852>.

Stratford, D., 2017. A review of the geomorphological context and stratigraphy of the Sterkfontein Caves, South Africa. *Hypogene Karst Regions and caves of the world*. 879–891. https://doi.org/10.1007/978-3-319-53348-3_60

Tasaki, S., 2006. The presence of stygobitic macroinvertebrates in karstic aquifers: a case study in the Cradle of Humankind World Heritage Site (Doctoral dissertation, University of Johannesburg).

Taurozzi, D., L. Gallitelli, G. Cesarini, S. Romano, M. Orsini & M. Scalici, 2024. Passive biomonitoring of airborne microplastics using lichens: a comparison between urban, natural and protected environments. *Environment International* 187: 108707. <https://doi.org/10.1016/j.envint.2024.108707>.

Todd, D. K. & L. W. Mays, 2004. *Groundwater Hydrology*. Wiley, Hoboken.

Valentić, L., P. Kozel & T. Pipan, 2022. Microplastic pollution in vulnerable karst environments: case study from the Slovenian classical karst region. *Acta Cardiologica* 51: 79–92. <https://doi.org/10.3986/ac.v51i1.10597>.

Viaroli, S., M. Lancia & V. Re, 2022. Microplastics contamination of groundwater: current evidence and future perspectives. A review. *Science of the Total Environment* 824: 153851. <https://doi.org/10.1016/j.scitotenv.2022.153851>.

Windsor, F. M., R. M. Tilley, C. R. Tyler & S. J. Ormerod, 2019. Microplastic ingestion by riverine macroinvertebrates. *Science of the Total Environment* 646: 68–74. <https://doi.org/10.1016/j.scitotenv.2018.07.271>.

Wright, S. L., J. Ulke, A. Font, K. L. A. Chan & F. J. Kelly, 2020. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. *Environment International* 136: 105411. <https://doi.org/10.1016/j.envint.2019.105411>.

Wynne, J. J., F. G. Howarth, S. Mammola, R. L. Ferreira, P. Cardoso, T. D. Lorenzo, D. M. Galassi, R. A. Medellin, B. W. Miller, D. Sánchez-Fernández & M. E. Bichuette, 2021. A conservation roadmap for the subterranean biome. *Conservation Letters* 14: e12834. <https://doi.org/10.1111/conl.12834>.

Zhang, D., M. A. Fraser, W. Huang, C. Ge, Y. Wang, C. Zhang & P. Guo, 2021. Microplastic pollution in water, sediment, and specific tissues of crayfish (*Procambarus clarkii*) within two different breeding modes in Jianli, Hubei province, China. *Environmental Pollution* 272: 115939. <https://doi.org/10.1016/j.envpol.2020.115939>.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.